Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The thermally dynamic nearshore Beaufort Sea, Alaska, is experiencing climate change-driven temperature increases. Measuring thermal tolerance of broad whitefish (Coregonus nasus) and saffron cod (Eleginus gracilis), both important species in the Arctic ecosystem, will enhance understanding of species-specific thermal tolerances. The objectives of this study were to determine the extent that acclimating broad whitefish and saffron cod to 5°C and 15°C changed their critical thermal maximum (CTmax) and HSP70 protein and mRNA expression in brain, muscle and liver tissues. After acclimation to 5°C and 15°C, the species were exposed to a thermal ramping rate of 3.4°C · h−1 before quantifying the CTmax and HSP70 protein and transcript concentrations. Broad whitefish and saffron cod acclimated to 15°C had a significantly higher mean CTmax (27.3°C and 25.9°C, respectively) than 5°C-acclimated fish (23.7°C and 23.2°C, respectively), which is consistent with trends in CTmax between higher and lower acclimation temperatures. There were species-specific differences in thermal tolerance with 15°C-acclimated broad whitefish having higher CTmax and HSP70 protein concentrations in liver and muscle tissues than saffron cod at both acclimation temperatures. Tissue-specific differences were quantified, with brain and muscle tissues having the highest and lowest HSP70 protein concentrations, respectively, for both species and acclimation temperatures. The differences in broad whitefish CTmax between the two acclimation temperatures could be explained with brain and liver tissues from 15°C acclimation having higher HSP70a-201 and HSP70b-201 transcript concentrations than control fish that remained in lab-acclimation conditions of 8°C. The shift in CTmax and HSP70 protein and paralogous transcripts demonstrate the physiological plasticity that both species possess in responding to two different acclimation temperatures. This response is imperative to understand as aquatic temperatures continue to elevate.more » « less
-
Seascape genomics provides a powerful framework to evaluate the presence and strength of environmental pressures on marine organisms, as well as to forecast long term species stability under various perturbations. In the highly productive North Pacific, forage fishes, key trophic links across ecosystems, are also contending with a rapidly warming climate and a litany of associated oceanographic changes (e.g., changes in salinity, dissolved oxygen, pH, primary production, etc.). These changes can place substantial selective pressures on populations over space and time. While several population genomics studies have targeted forage fishes in the North Pacific, none have formally analyzed the interactions between genotype and environment. However, when population genomics studies provide collection location information and other critical data, it is possible to supplement a published genomic dataset with environmental data from existing public databases and perform “post hocseascape genomics” analyses. In reviewing the literature, we find pertinent metadata (dates and locations of sample collection) are rarely provided. We identify specific factors that may impede the application of seascape genomics methods in the North Pacific. Finally, we present an approach for supplementing data in a reproducible way to allow forpost hocseascape genomics analysis, in instances when metadata are reported. Overall, our goal is to demonstrate – via literature review – the utility and importance of seascape genomics to understanding the long term health of forage fish species in the North Pacific.more » « less
An official website of the United States government
